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Abstract Dual characterizations of containment of a convex set, defined by quasiconvex
constraints, in a convex set, and in a reverse convex set, defined by a quasiconvex constraint,
are provided. Notions of quasiconjugate for quasiconvex functions, H -quasiconjugate and
R-quasiconjugate, play important roles to derive characterizations of the set containments.
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1 Introduction

Classification is one of the basic problems in data mining which addresses the question
of how best to use historical data to improve the process of making decisions and to dis-
cover regularities. Motivated by general nonpolyhedral knowledge-based data classifica-
tion, the containment problem which consists of characterizing the inclusion A ⊂ B, where
A = {x ∈ R

n | fi (x) ≤ 0, i ∈ I } and B = {x ∈ R
n | h j (x) ≤ 0, j ∈ J }, was studied by

many researchers. The first characterizations were given by Mangasarian [5] for linear sys-
tems and for systems involving differentiable convex functions, and key to this approach was
Farkas’ Lemma and the duality theorems of convex programming, respectively. Jeyakumar
[4] established excellent dual characterizations of the set containment, assuming the con-
vexity of fi , i ∈ I , and the convexity (the concavity) of h j , j ∈ J , so that A is a closed
convex set and B is a closed convex set (a reverse convex set, respectively). Also, Goberna
and Rodríguez [1] established characterizations of the set containment for linear systems
containing strict inequalities and weak inequalities as well as equalities, and, Goberna et al.
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[2] characterized set containments with convex inequalities, which can be either weak or
strict inequalities.

It is well known that the Fenchel conjugate provides dual problems of convex minimiza-
tion problems. In a similar way, different notions of conjugate for quasiconvex functions have
been introduced in order to obtain dual problems of quasiconvex minimization problems. For
example, the λ-quasiconjugate (λ ∈ R), defined by Greenberg and Pierskalla [3], plays in
quasiconvex optimization and in the theory of surrogate duality the same role played by
the Fenchel conjugate in convex optimization and Lagrangian duality. But λ-quasiconjugate
involves an extra parameter that many authors have tried to eliminate. Thach [6,7] established
two dualities without the extra parameter for a general quasiconvex minimization (maximi-
zation) problem, by using the concepts of quasiconjugate and R-quasiconjugate, which are
similar to 1 and −1-quasiconjugate.

Motivated by these works, we establish in this paper dual characterizations of the set
containment, assuming the quasiconvexity of fi , i ∈ I , the linearity or quasiconcavity of
h j , j ∈ J , that A is defined by strict inequalities and B by both types of inequalities, so
that A is convex whereas B is either convex or reverse convex. The dual characterizations
are provided in terms of level sets of quasiconjugate and R-quasiconjugate of quasiconvex
functions.

2 Notation and preliminaries

Throughout this paper, let f be a function from R
n to R, where R = [−∞,∞]. Remember

that f is said to be quasiconvex if, for all x1, x2 ∈ R
n and α ∈ (0, 1),

f ((1 − α)x1 + αx2) ≤ max{ f (x1), f (x2)}.
Define

L( f,�, α) = {x ∈ R
n | f (x) � α}

for any α ∈ R. Symbol � represents any binary relation. Then f is quasiconvex if and only
if for any α ∈ R,

L( f,≤, α) = {x ∈ R
n | f (x) ≤ α}

is a convex set, or equivalently, for any α ∈ R,

L( f,<, α) = {x ∈ R
n | f (x) < α}

is a convex set. We know that any convex function is quasiconvex. The converse is not true.

Definition 1 A subset S of R
n is said to be evenly convex if it is the intersection of some

family of open halfspaces.

Note that the whole space and the empty set are evenly convex. Also, any open convex
set and any closed convex set are evenly convex. Clearly, every evenly convex set is convex.

Definition 2 A function f is said to be evenly quasiconvex if L( f,≤, α) is evenly convex
for all α ∈ R.

Definition 3 A function f is said to be strictly evenly quasiconvex if L( f,<, α) is evenly
convex for all α ∈ R.
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Clearly, every evenly quasiconvex function is quasiconvex, every lower semicontinuous
(lsc) quasiconvex function is evenly quasiconvex, and every upper semicontinuous (usc)
quasiconvex function is strictly evenly quasiconvex. It is easy to show that every strictly
evenly quasiconvex function is evenly quasiconvex, but the converse is not generally true.

Example 1 Consider the function

f (x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x1 ≥ 0 and x2 ≤ x1,

+∞ if x2 < 0 or x1 < 0,

1 if x1 = 0 and x2 > 0,

1 − x1
x2

if x1 > 0 and x2 > x1.

The function f is evenly quasiconvex, but not strictly evenly quasiconvex because L( f,<, α)

is not evenly convex when α ∈ (0, 1].

3 H-quasiconjugacy and H-quasiconvexity

In this paper, we use two concepts of quasiconjugacy, due to Thach [6,7], that we distinguish
by the prefixes “H -” and “R-”.

Definition 4 ([6]) H -quasiconjugate of f is the function f H : R
n → R such that

f H (ξ) =
{− inf{ f (x) | 〈ξ, x〉 ≥ 1} if ξ 
= 0

− sup{ f (x) | x ∈ R
n} if ξ = 0.

The H -quasiconjugate of f H , say f HH , is called the H -biquasiconjugate of f .

Clearly, f H (0) ≤ f H (x) for all x ∈ R
n\{0}, f HH ≤ f on R

n\{0}, f H ≤ gH on R
n\{0}

when f ≥ g on R
n\{0}, and f H = gH on R

n\{0} when f = g on R
n\{0}. Then we have

the following inequalities:

Proposition 1 (i) supx∈Rn f H (x) ≤ − inf x∈Rn f (x);
(ii) − supx∈Rn f (x) ≤ inf x∈Rn\{0} f H (x).

Definition 5 A subset S of R
n is said to be H -evenly convex if it is the intersection of some

family of open halfspaces, and each open halfspace containing 0.

Note that the whole space and the empty set are H -evenly convex. Also it is clear that a
nonempty subset S of R

n is H -evenly convex if and only if S is an evenly convex set which
contains 0.

Definition 6 A function f is said to be H -evenly quasiconvex if L( f,≤, α) is H -evenly
convex for all α ∈ R.

Definition 7 A function f is said to be strictly H -evenly quasiconvex if L( f,<, α) is
H -evenly convex for all α ∈ R.

It is clear that every strictly H -evenly quasiconvex function is H -evenly quasiconvex,
but the converse implication is not true, as Example 1 shows. Also a function f is H -evenly
quasiconvex if and only if f is evenly quasiconvex and f (0) = infx∈Rn f (x). Moreover we
can check that f H is H -evenly quasiconvex, in a similar way of [7]. We can also see that the
equality f HH (0) = inf{ f (x) | x ∈ R

n\{0}} holds in [6]. From this equality we characterize
the identity f = f HH in the next theorem, whose proof will be given after Proposition 3.
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Theorem 1 The following properties are satisfied:

(i) f = f HH on R
n\{0} if f is H-evenly quasiconvex.

(ii) f = f HH if and only if f is H-evenly quasiconvex and

f (0) = inf{ f (x) | x ∈ R
n\{0}}.

Definition 8 We say that f achieves the maximum value at infinity if f (xk) → sup{ f (x) |
x ∈ R

n} for any sequence {xk} with ‖xk‖ → +∞.

Definition 9 We say that f achieves the minimum value at the origin if f (xk) → inf{ f (x) |
x ∈ R

n\{0}} for any sequence {xk} ⊂ R
n\{0} with xk → 0.

Let �∞ and γ 0 be the set of all functions that achieve the maximum value at infinity, and
the set of all functions that achieve the minimum value at the origin, respectively; that is,

�∞ = {g : R
n → R | g achieves the maximum value at infinity},

γ 0 = {g : R
n → R | g achieves the minimum value at the origin}.

We denote by Xc the complement of X ⊂ R
n and by B(z, r) the open ball centered at z ∈ R

n

with radius r > 0.

Proposition 2 The following properties are satisfied:

(i) f ∈ �∞ if and only if for any M < sup{ f (x) | x ∈ R
n} there exists δ > 0 such that

B(0, δ)c ⊂ L( f,≥, M).

(ii) f ∈ γ 0 if and only if for any m > inf{ f (x) | x ∈ R
n\{0}} there exists δ > 0 such that

B(0, δ)\{0} ⊂ L( f,<, m).

Proof We only show (ii); we can show (i) in the similar way. Assume that f achieves the
minimum value at the origin and there exists m0 > inf{ f (x) | x ∈ R

n\{0}} such that for any
δ > 0, there exists x ∈ B(0, δ)\{0} such that f (x) ≥ m0. Then we can choose a sequence
{xk} ⊂ R

n\{0} converging to 0. This contradicts that f achieves the minimum value at the
origin. Conversely, assume that for any m > inf{ f (x) | x ∈ R

n\{0}}, there exists δ > 0 such
that B(0, δ)\{0} ⊂ L( f,<, m). If {xk} ⊂ R

n\{0} converges to 0, then there exists K ∈ N

such that ‖xk‖ < δ for any k ≥ K . This shows that inf{ f (x) | x ∈ R
n\{0}} ≤ f (xk) < m

for any k ≥ K . This shows f (xk) → inf{ f (x) | x ∈ R
n\{0}}. �

According to [6], f is usc then f H is lsc, and if a function f ∈ �∞ is lsc, then f H is usc.

Theorem 2 The following properties are satisfied:

(i) If f ∈ γ 0 then f H ∈ �∞;
(ii) If f ∈ �∞ then f H ∈ γ 0.

Proof (i) Let f ∈ γ 0 and {xk} ⊂ R
n be a sequence satisfying ‖xk‖ → +∞. By using (ii)

of Proposition 2, for any m > inf{ f (x) | x ∈ R
n\{0}}, there exists δ > 0 such that

B(0, δ)\{0} ⊂ L( f,<, m).
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Since ‖xk‖ → +∞, we can find an integer K such that for any k ≥ K ,
xk

‖xk‖2 ∈
B(0, δ)\{0}. Also since

〈
xk,

xk
‖xk‖2

〉
= 1, by using (i) of Proposition 1, we can show that

inf{ f (x) | x ∈ R
n\{0}} ≤ − sup

x∈Rn
f H (x) ≤ − f H (xk) ≤ f

(
xk

‖xk‖2

)

< m.

This shows that f H (xk) → sup{ f H (x) | x ∈ R
n}, and then f H ∈ �∞.

(ii) Let f ∈ �∞ and {xk} ⊂ R
n\{0} be a sequence satisfying xk → 0. For any M <

sup{ f (x) | x ∈ R
n}, there exists δ > 0 such that

B(0, δ)c ⊂ L( f,≥, M),

by Proposition 2 (i). Since xk → 0, we can find an integer K such that for any k ≥ K ,

{x | 〈xk, x〉 ≥ 1} ⊂ B(0, δ)c,

that is,

〈xk, x〉 ≥ 1 �⇒ f (x) ≥ M.

From this and by using (ii) of Proposition 1, we have

sup{ f (x) | x ∈ R
n} ≥ − inf

x∈Rn\{0} f H (x) ≥ − f H (xk) ≥ M,

for any k ≥ K . This shows that f H (xk) → inf{ f H (x) | x ∈ R
n\{0}}, and then

f H ∈ γ 0. �

4 Level set of biquasiconjugate

Given a set S ⊂ R
n , we shall denote by intS, clS, coS and coneS the interior, the closure,

the convex hull, and the conical hull generated by S, respectively. The evenly convex hull
of S, denoted by ecS, is the smallest evenly convex set which contains S (i.e., it is the inter-
section of all open halfspaces which contain S). The H -evenly convex hull of S, denoted by
HecS, is the smallest H -evenly convex set which contains S. Note that coS ⊂ ecS ⊂ clcoS,
and these differences are slight because clcoS = clecS. Moreover if S is nonempty, then
HecS = ec(S ∪ {0}).
Proposition 3 Let S be a nonempty subset of R

n.

(i) An element x ∈ R
n satisfies x /∈ ecS if and only if there exists a ∈ R

n\{0} and α ∈ R

such that, for all y ∈ S,

〈a, x〉 ≥ α > 〈a, y〉 .

(ii) An element x ∈ R
n satisfies x /∈ HecS if and only if there exists a ∈ R

n\{0} such that,
for all y ∈ S,

〈a, x〉 ≥ 1 > 〈a, y〉 .

Proof (i) The proof is easy since ecS is equal to the intersection of the family of all open
halfspaces which contain S. (ii) By using (i) above, x /∈ HecS = ec(S ∪ {0}) if and only if
there exists a ∈ R

n\{0} and α ∈ R such that, for all y ∈ S ∪ {0},
〈a, x〉 ≥ α > 〈a, y〉 .

123



556 J Glob Optim (2009) 45:551–563

Taking y = 0, we have α > 0, and hence, for all y ∈ S,
〈 a

α
, x

〉
≥ 1 >

〈 a

α
, y

〉
.

The converse is clear. �
Now we prove Theorem 1 by using Proposition 3.

Proof of Theorem1 We may prove (i). It is clear that f (x) ≥ f HH (x) for all x ∈ R
n\{0}.

Assume that there exists x0 ∈ R
n\{0} such that f (x0) > f HH (x0). We can choose α ∈ R

satisfying

f (x0) > α > f HH (x0),

and then x0 
∈ L( f,≤, α). Since L( f,≤, α) is H -evenly convex, there exists v ∈ R
n\{0}

such that 〈v, x〉 ≥ 1 > 〈v, y〉 for all y ∈ L( f,≤, α) by using Proposition 3. This shows that
f H (v) ≤ −α. Therefore

f HH (x0) = − inf{ f H (u) | 〈u, x0〉 ≥ 1} ≥ − f H (v) ≥ α.

This is a contradiction. �
Next we show properties of level sets of H -biquasiconjugate. For this purpose, we prove

the following proposition.

Proposition 4 Let α, β ∈ R, and v ∈ R
n\{0}. If f ∈ �∞ and f is lsc, then the following

two conditions are equivalent:

(i) L( f,≤, β) ⊂ {x | 〈v, x〉 < α},
(ii) ∃ε > 0 s.t. L( f,<, β + ε) ⊂ {x | 〈v, x〉 < α}.

Proof We show that condition (i) implies condition (ii). Assume that L( f,≤, β) ⊂ {x |
〈v, x〉 < α} and for all ε > 0 there exists x ∈ L( f,<, β + ε) such that 〈v, x〉 ≥ α, then
we can choose a sequence {xk} ⊂ R

n such that for all k ∈ N, β < f (xk) < β + 1
k and

〈v, xk〉 ≥ α, and we have f (xk) → β < f (x1) ≤ sup{ f (x) | x ∈ R
n}. If ‖xk‖ → +∞, then

f (xk) → sup{ f (x) | x ∈ R
n} since f ∈ �∞. This is a contradiction. Hence {xk} is bounded,

and we can choose a subsequence {xki } and x0 ∈ R
n such that xki → x0. Clearly 〈v, x0〉 ≥ α,

but x0 ∈ L( f,≤, β) since f (x0) ≤ lim inf i→∞ f (xki ) = β. This is a contradiction. The
converse implication is obvious. �

Now we can give results on the level sets of the H -biquasiconjugate.

Theorem 3 The following properties are satisfied:

(i) L( f,≤, α)\{0} ⊂ L( f HH ,≤, α);
(ii) L( f,<, α)\{0} ⊂ L( f HH ,<, α);

(iii) HecL( f,≤, α) ⊂ L( f HH ,≤, α);
(iv) L( f HH ,<, α) ⊂ HecL( f,<, α);
(v) If f ∈ �∞ and f is lsc, then

HecL( f,≤, α) = L( f HH ,≤, α) =
⋂

ε>0

HecL( f,<, α + ε).
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Proof (i), (ii) and (iii) are obvious. At first, we show (iv). Assume that x(
= 0) /∈ Hec
L( f,<, α). By using Proposition 3, there exists a ∈ R

n\{0} such that 〈a, x〉 ≥ 1 > 〈a, y〉
for all y ∈ L( f,<, α). Then

f HH (x) = − inf{ f H (v) | 〈v, x〉 ≥ 1} ≥ − f H (a) = inf{ f (y) | 〈a, y〉 ≥ 1} ≥ α.

Therefore x /∈ L( f HH ,<, α). If L( f HH ,<, α) contains 0, then L( f,<, α) is not empty,
and hence HecL( f,<, α) contains 0.

Next we show (v).

HecL( f,≤, α) ⊂ L( f HH ,≤, α) ⊂
⋂

ε>0

HecL( f,<, α + ε)

is obviously. We assume that x /∈ HecL( f,≤, α). By using Proposition 3, there exists a ∈
R

n\{0} such that 〈a, x〉 ≥ 1 > 〈a, y〉 for all y ∈ L( f,≤, α), then we have L( f,≤, α) ⊂ {y |
〈a, y〉 < 1}. By using Proposition 4, there exists ε0 > 0 such that 〈a, x〉 ≥ 1 > 〈a, y〉 for all
y ∈ L( f,<, α + ε0). By using Proposition 3 again, we have x /∈ ⋂

ε>0 HecL( f,<, α + ε),
and consequently

⋂

ε>0

HecL( f,<, α + ε) ⊂ HecL( f,≤, α).

This completes the proof. �

5 Containment of a convex set in an open halfspace

In this section, we present a characterization of the containment of a convex set, defined by
quasiconvex constraints, in an open halfspace. For this purpose we show a result concerning
the H -quasiconjugate of the sup-function, which plays an important role in this paper. We
start with a result on the containment for the case |I | = 1.

Theorem 4 Let v ∈ R
n\{0}, α ∈ (0,∞) and β ∈ R. Then

L( f,<, β) ⊂ {x | 〈v, x〉 < α} ⇐⇒ v

α
∈ L( f H ,≤,−β).

Proof Assume that L( f,<, β) ⊂ {x | 〈v, x〉 < α}, i.e., that f (x) < β implies 〈v, x〉 < α or,
equivalently, that

〈
v
α
, x

〉 ≥ 1 implies f (x) ≥ β. This shows that

f H
( v

α

)
= − inf

{
f (x)

∣
∣
∣

〈 v

α
, x

〉
≥ 1

}
≤ −β.

Conversely, if f H ( v
α
) ≤ −β, then inf{ f (x) | 〈

v
α
, x

〉 ≥ 1} ≥ β. Therefore the inequality
〈
v
α
, x

〉 ≥ 1 implies f (x) ≥ β, i.e., f (x) < β implies 〈v, x〉 < α. Thus L( f,<, β) ⊂ {x |
〈v, x〉 < α}. �

The theorem is valid when the constraint function is unique. Substituting supi∈I fi into
f , we have

L(sup
i∈I

fi ,<, β) ⊂ {x | 〈v, x〉 < α} ⇐⇒ v

α
∈ L((sup

i∈I
fi )

H ,≤,−β),

for v ∈ R
n\{0}, α ∈ (0,∞) and β ∈ R. We know that

(i) (inf i∈I fi )
H = (supi∈I f H

i ) on R
n\{0}, and
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(ii) If f is H -evenly quasiconvex, then f HH = f on R
n\{0}.

When every fi is H -evenly quasiconvex, by substituting f H
i into (i) we have

(inf
i∈I

f H
i )HH = (sup

i∈I
f HH
i )H = (sup

i∈I
fi )

H

on R
n\{0}. However, the H -quasiconvexity assumption is too strong because it assures

fi (0) ≤ fi (x) for all x ∈ R
n and i ∈ I . The assumption of the next theorem is weaker than

the previous one and guarantees that (inf i∈I f H
i )HH = (supi∈I fi )

H on R
n\{0}.

Theorem 5 Let I be an arbitrary index set, and fi be a evenly quasiconvex function from
R

n to R for all i ∈ I . If the condition

(A1) supi∈I fi (x) > supi∈I fi (0) for all x ∈ R
n\{0},

is satisfied, then

(sup
i∈I

fi )
H (v) = (inf

i∈I
f H
i )HH (v) for all v ∈ R

n\{0}.

Proof In general, the following equality about H -quasiconjugate of inf-function is satisfied:
for all v ∈ R

n\{0},
(inf

i∈I
fi )

H (v) = sup
i∈I

f H
i (v),

see for example [6]. Then, for all x ∈ R
n\{0}, we have

(inf
i∈I

f H
i )H (x) = sup

i∈I
f HH
i (x) ≤ sup

i∈I
fi (x),

hence,for all v ∈ R
n\{0}, we have

(inf
i∈I

f H
i )HH (v) ≥ (sup

i∈I
fi )

H (v).

If the equality does not hold in the above inequality, then there exists v ∈ R
n\{0} such that

(supi∈I fi )
H (v) < (inf i∈I f H

i )HH (v), and hence, there exists α ∈ R and x ′ ∈ R
n such that〈

v, x ′〉 ≥ 1 and

(sup
i∈I

fi )
H (v) < α < inf

〈w,x ′〉≥1
inf
i∈I

f H
i (w).

From x ′ 
= 0 and the assumption, we have supi∈I fi (x ′)> supi∈I fi (0), and put ε′ =
(supi∈I fi (x ′) − supi∈I fi (0))/2 > 0. For all ε ∈ (0, ε′), there exists i0 ∈ I such that

fi0(x ′) > sup
i∈I

fi (x ′) − ε > sup
i∈I

fi (0) ≥ fi0(0).

Since L( fi0 ,≤, supi∈I fi (x ′) − ε) does not contain x ′, contains 0, and it is evenly convex,
there exists a ∈ R

n\{0} such that for all x ∈ L( fi0 ,≤, supi∈I fi (x ′) − ε),
〈
a, x ′〉 ≥ 1 > 〈a, x〉 .

Therefore,

α < inf
〈w,x ′〉≥1

inf
i∈I

f H
i (w) ≤ f H

i0
(a) ≤ − sup

i∈I
fi (x ′) + ε.

Since ε is arbitrary, we have

α ≤ − sup
i∈I

fi (x ′) ≤ − inf〈v,x〉≥1
sup
i∈I

fi (x) = (sup
i∈I

fi )
H (v).

This is a contradiction. �
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Combining Theorems 4 and 5 we get the first characterization theorem.

Theorem 6 Let I be an arbitrary index set, and fi be a evenly quasiconvex function from
R

n to R for all i ∈ I , and assume the condition (A1):

(A1) ∀x ∈ R
n\{0} supi∈I fi (x) > supi∈I fi (0).

Then, for v ∈ R
n\{0}, α ∈ (0,∞) and β ∈ R, the following conditions (i) and (ii) are

equivalent:

(i) {x ∈ R
n | supi∈I fi (x) < β} ⊂ {x ∈ R

n | 〈v, x〉 < α},
(ii) v

α
∈ L((inf i∈I f H

i )HH ,≤,−β).

From Theorem 3 (iii) and Theorem 5,

Hec
⋃

i∈I

L( f H
i ,≤,−β) ⊂ L((inf

i∈I
( f H

i ))HH ,≤,−β) = L((sup
i∈I

fi )
H ,≤,−β),

which yields the following result.

Corollary 1 Let v ∈ R
n\{0}, α ∈ (0,∞) and β ∈ R. If there exists m ∈ N, v1, . . . , vm ∈

R
n, and λ1, . . . , λm ∈ [0,∞) with

∑m
k=1 λk ≤ 1 such that

v

α
=

m∑

k=1

λkvk and for all k ∈ {1, · · · , m}, f H
i (vk) ≤ −β for some i ∈ I

then,

{x ∈ R
n | sup

i∈I
fi (x) < β} ⊂ {x ∈ R

n | 〈v, x〉 < α}.

Next, we show a result on the containment for the case I is arbitrary.

Theorem 7 Let I be an arbitrary index set, and fi be an evenly quasiconvex function from
R

n to R for all i ∈ I . Assume that the following conditions (A1) and (A2) are satisfied:

(A1) ∀x ∈ R
n\{0} supi∈I fi (x) > supi∈I fi (0),

(A2) inf i∈I ( f H
i ) is l.s.c and included in �∞.

Then for v ∈ R
n\{0}, α ∈ (0,∞) and β ∈ R, the following statements are equivalent:

(i) L(supi∈I fi ,<, β) ⊂ {x ∈ R
n | 〈v, x〉 < α};

(ii) v
α

∈ HecL(inf i∈I f H
i ,≤,−β).

Proof Firstly, we show that (ii) implies (i). Assume that (ii) holds. Then, from Theorem 3
(iii) and Theorem 5,

HecL(inf
i∈I

f H
i ,≤,−β) ⊂ L((inf

i∈I
( f H

i ))HH ,≤,−β) = L((sup
i∈I

fi )
H ,≤,−β).

Then we have v
α

∈ L((supi∈I fi )
H ,≤,−β) and, by Theorem 4, (i) is derived. Next, we show

(i) implies (ii). By using Theorem 4 and Theorem 5, (i) implies

v

α
∈ L((inf

i∈I
( f H

i ))HH ,≤,−β).

From assumption (A2) and Theorem 3, we get

L((inf
i∈I

( f H
i ))HH ,≤,−β) = HecL(inf

i∈I
f H
i ,≤,−β).

Then (ii) is satisfied. �
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In the following Corollary 2, we show a set containment characterization when all fi are
quasiconvex, I is a finite set, all h j are linear, J is an arbitrary set, and the inequalities in A
and B are strict.

Corollary 2 Let I be a finite set, J be an arbitrary set, fi be an usc quasiconvex function
from R

n to R and included in γ 0 for each i ∈ I, v j ∈ R
n\{0} and α j ∈ (0,∞) for each

j ∈ J . If condition (A1) holds, then the following conditions (i) and (ii) are equivalent:

(i) {x ∈ R
n | ∀i ∈ I, fi (x) < β} ⊂ {x ∈ R

n | ∀ j ∈ J,
〈
v j , x

〉
< α j };

(ii) ∀ j ∈ J ,
v j
α j

∈ Hec
⋃

i∈I L( f H
i ,≤,−β).

Proof We can check
⋃

i∈I L( f H
i ,≤,−β) = L(inf i∈I f H

i ,≤,−β), L(supi∈I fi ,<, β) =
{x ∈ R

n | ∀i ∈ I, fi (x) < β} and (A2) by using assumptions. �

6 Containment of a convex set in a reverse convex set

In this section, we present a characterization of the containment of a convex set, defined by
finitely many constraints, in a reverse convex set, defined by a quasiconvex constraint. First,
we introduce another concept of quasiconjugate for quasiconvex functions.

Definition 10 ([7]) R-quasiconjugate of f is the function f R : R
n → R such that, for any

ξ ∈ R
n ,

f R(ξ) = − inf{ f (x) | 〈ξ, x〉 ≥ −1}.
The R-quasiconjugate of f R, f RR , is called the R-biquasiconjugate of f .

Theorem 8 Let v ∈ R
n\{0}, β ∈ R. Then,

L( f,<, β) ⊂ {x | 〈v, x〉 < −1} ⇐⇒ v ∈ L( f R,≤,−β).

The proof is similar to the one of Theorem 4 and so it is omitted.

Theorem 9 Let f and h be usc quasiconvex functions from R
n to R. Assume that

L(h,<, α) 
= ∅ and 0 ∈ L( f,<, β) for some α, β ∈ R. Then the following conditions
are equivalent:

(i) L( f,<, β) ⊂ L(h,≥, α),
(ii) 0 ∈ L( f H ,≤,−β)\{0} + L(h R,≤,−α)\{0},

(iii) there exists v ∈ R
n\{0} such that f H (v) ≤ −β and h R(−v) ≤ −α.

Proof It is clear that (ii) and (iii) are equivalent. Since L( f,<, β) and L(h,<, α) are non-
empty open convex subsets and 0 ∈ L( f,<, β), we have

(i) ⇐⇒ L( f,<, β) ∩ L(h,<, α) = ∅
⇐⇒ ∃v ∈ R

n\{0}, ∃γ ∈ R s.t.

〈v, x〉 > γ >
〈
v, x ′〉 ,∀x ∈ L(h,<, α),∀x ′ ∈ L( f,<, β)

⇐⇒ ∃v ∈ R
n\{0} s.t.

〈v, x〉 > 1 >
〈
v, x ′〉 ,∀x ∈ L(h,<, α),∀x ′ ∈ L( f,<, β)

⇐⇒ ∃v ∈ R
n\{0} s.t. f H (v) ≤ −β and h R(−v) ≤ −α,

by the separation theorem. �
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Substituting supi∈I fi into f , we obtain the following theorem.

Theorem 10 Let I be a finite set, fi be an usc quasiconvex function from R
n to R for each

i ∈ I , and h be an usc quasiconvex function from R
n to R. Assume that L(h,<, α) 
= ∅ and

supi∈I fi (0) < β for some α, β ∈ R. Then the following conditions are equivalent:

(i) {x ∈ R
n | ∀i ∈ I, fi (x) < β} ⊂ L(h,≥, α),

(ii) 0 ∈ L((supi∈I fi )
H ,≤,−β)\{0} + L(h R,≤,−α)\{0},

(iii) there exists v ∈ R
n\{0} such that (supi∈I fi )

H (v) ≤ −β and h R(−v) ≤ −α.

Proof Since I is a finite set, we have supi∈I fi is usc and L(supi∈I fi ,≤, β) = {x ∈ R
n |

∀i ∈ I, fi (x) < β}. By using Theorem 9, we conclude the proof. �
The next corollary characterizes the set containment in the case that all fi are quasiconvex,

I is a finite set, all h j are quasiconcave, J is an arbitrary set, the inequalities in A are strict,
and the inequalities in B are weak.

Corollary 3 Let I be a finite set, J be an arbitrary set, fi be an usc quasiconvex function
from R

n to R included in γ 0 for each i ∈ I, h j be an usc quasiconvex function from R
n to R

and α j ∈ (0,∞) for each j ∈ J . Assume that

(A1) ∀x ∈ R
n\{0} supi∈I fi (x) > supi∈I fi (0),

and L(h j ,<, α j ) 
= ∅ for each j ∈ J and supi∈I fi (0) < β for some β ∈ R. Then the
following conditions are equivalent:

(i) {x ∈ R
n | ∀i ∈ I, fi (x) < β} ⊂ {x ∈ R

n | ∀ j ∈ J, h j (x) ≥ α j },
(ii) for each j ∈ J , 0 ∈ Hec

⋃
i∈I L( f H

i ,≤,−β)\{0} + L(h R
j ,≤,−α j )\{0},

(iii) for each j ∈ J , there exists v ∈ R
n\{0} such that

v ∈ Hec
⋃

i∈I

L( f H
i ,≤,−β) and h R

j (−v) ≤ −α j .

7 Discussion

In this section, we compare the main results in this paper with previous ones in Refs. 1, 2, 4
and 5. Consider the sets

F = {x ∈ R
n | ft (x) ≤ 0,∀t ∈ W ; gs(x) < 0,∀s ∈ S; le(x) = 0,∀e ∈ E},

and

G = {x ∈ R
n | ki (x) < 0,∀i ∈ I ; h j (x) ≤ 0,∀ j ∈ J },

where W, S, E, I and J are pairwise disjoint sets, W ∪ S ∪ E 
= ∅, I ∪ J 
= ∅, and
{ ft , t ∈ W }, {gs , s ∈ S}, {le, e ∈ E}, {ki , i ∈ I } and {h j , j ∈ J } are functions from R

n to R.
We summarize in Table 1 the results on set containments in the similar way in [1]. No.

from 1 to 7 are previous results, No. 8 and 9 are our results in this paper. The columns
3, 4, 5, 6 and 7 inform on the cardinality of the index sets, which can be empty, finite or
arbitrary (abbreviated as “∅”, “Fin” and “Arb”, respectively), and the columns 8, 9, 10, 11
and 12 inform about assumptions of functions, which can be affine, quadratic concave, dif-
ferentiable convex, differentiable concave, convex, concave, quasiconvex and quasiconcave
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Table 1 Literature on set containments

No. Ref. W S E I J { ft } {gs } {le} {ki } {h j }
1 [5] Fin ∅ ∅ ∅ Fin Aff – – – Aff

2 [5] Fin ∅ ∅ ∅ Fin Aff – – – Quad

3 [5] Fin ∅ ∅ ∅ Fin Dconv – – – Dconc

4 [4] Arb ∅ ∅ ∅ Fin Conv – – – Aff

5 [4] Arb ∅ ∅ ∅ Fin Conv – – – Conc

6 [1] Arb *** Arb Arb *** Aff Aff Aff Aff Aff

7 [2] Arb Arb ∅ ∅ Fin Conv Conv – – Conc

8 – ∅ Fin ∅ Fin ∅ Qconv – – – Aff

9 – ∅ Fin ∅ ∅ Fin Qconv – – – Qconc

(abbreviated as “Aff”, “Quad”, “Dconv”, “Dconc”, “Conv”, “Conc”, “Qconv” and “Qconc”,
respectively). “***” means that S ∪ J 
= ∅.

In the rest of the section, we compare No. 4 with No. 8 especially. Section 5 characterizes
the containment in the form

L( f,<, β) ⊂ {x | 〈v, x〉 < α},
whereas Jeyakumar [4] considered inclusions of the form

L( f,≤, β) ⊂ {x | 〈v, x〉 ≤ α}.
We discuss conditions guaranteeing the equivalence of both inclusions. It is easy to show
that for any v ∈ R

n\{0},
int{x | 〈v, x〉 ≤ α} = {x | 〈v, x〉 < α}, cl{x | 〈v, x〉 < α} = {x | 〈v, x〉 ≤ α}.

Moreover, if f is continuous, we have

L( f,<, β) ⊂ intL( f,≤, β), clL( f,<, β) ⊂ L( f,≤, β)

are satisfied, but the converse inclusions are not true in general. When the equalities are
fulfilled in these inclusions, we can show easily that our form and Jeyakumar’s form are
equivalent. For our purpose, we show the following lemmas:

Lemma 1 Let A, B ⊂ R
n. If intA = ∅and int(clB) = intB, then we have int(A∪B) = intB.

Proof Inclusion int(A ∪ B) ⊃ intB is obvious. Conversely, for any x ∈ int(A ∪ B), there
exists r > 0 satisfying B(x, r) ⊂ A ∪ B. If int(B(x, r) ∩ Bc) 
= ∅, then we have a contra-
diction since intA = ∅ and B(x, r) ∩ Bc ⊂ (A ∪ B) ∩ Bc ⊂ A hold. Therefore

∅ = int(B(x, r) ∩ Bc) = B(x, r) ∩ int(Bc) = B(x, r) ∩ (clB)c,

and then B(x, r) ⊂ clB. By using assumption int(clB) = intB, we obtain B(x, r) ⊂
int(clB) = intB ⊂ B. This shows that x ∈ intB. �
Lemma 2 Let A, B ⊂ R

n. If intA = ∅ and B is a convex set with intB 
= ∅, then we have

(i) int(A ∪ B) = intB,
(ii) int(A ∪ Bc) = intBc.
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Proof Since B is convex and intB 
= ∅, we have

int(clB) = intB and cl(intB) = clB.

The second equation yields int(cl(Bc)) = int(Bc). Therefore (i) and (ii) are proved by using
Lemma 1. �
Theorem 11 Let f be a continuous quasiconvex function from R

n to R, v ∈ R
n\{0} and

α ∈ R. If intL( f,=, β) = ∅ and intL( f,<, β) 
= ∅ for some β ∈ R, then we have

(i) L( f,<, β) = intL( f,≤, β),
(ii) clL( f,<, β) = L( f,≤, β). Moreover

L( f,<, β) ⊂ {x | 〈v, x〉 < α} ⇐⇒ L( f,≤, β) ⊂ {x | 〈v, x〉 ≤ α}.
Proof (i) Put A = L( f,=, β) and B = L( f,<, β). By using Lemma 2 (i), intL( f,≤, β) =
intL( f,<, β) = L( f,<, β) because f is usc. Next we show (ii). Put A = L( f,=, β) and
B = L( f,≤, β). By using the Lemma 2 (ii), we have intL( f,≥, β) = intL( f,>, β), and
equivalently clL( f,<, β) = clL( f,≤, β). Since f is lsc, clL( f,≤, β) = L( f,≤, β). The
equivalence is straightforward consequence of statements (i) and (ii). �
Remark 1 If every fi is convex and dom(supi∈I fi ) = R

n and condition [A1] holds, then
the assumptions of Theorem 6 is satisfied. Also if inf x∈Rn supi∈I fi (x) < 0, we can check
that intL(supi∈I fi ,=, 0) = ∅ and intL(supi∈I fi ,<, 0) 
= ∅. For any α ∈ (0,∞) and any
v ∈ R

n\{0}, we have the following characterization concerned with the Fenchel conjugate
and H -quasiconjugate :

(v, α) ∈ cl

(

coneco
⋃

i∈I

epi f ∗
i

)

⇐⇒ v

α
∈ L((inf

i∈I
f H
i )HH ,≤, 0).
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